
 CHEP 2003, La Jolla, California, March 24-28, 2003 1

TUAT011

Virtual Data in CMS Production
A. Arbree, P. Avery, D. Bourilkov, R. Cavanaugh, S. Katageri, J. Rodriguez
University of Florida, Gainesville, FL 32611, USA
G. Graham
FNAL, Batavia, IL 60510, USA
J. Vöckler
University of Chicago, Chicago, IL 60637, USA
M. Wilde
ANL, Argonne, IL 60439, USA

Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production
of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: 1) a Virtual Data
Language, which is used to describe virtual data products, 2) a Virtual Data Catalog, which is used to store virtual data entries,
3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence
independent plan, 4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting
for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to
generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as
WorkRunner, is used to schedule the instantiation of virtual data products across a grid.

1. INTRODUCTION
The term “virtual data” as used in grid computing

represents an abstraction of actual computational
workflows, which are site specific and data existence
dependent, to that of workflow descriptions, which are
independent of both location and existence. Because the
execution environment in grid computing is intrinsically
both heterogeneous and dynamic, the use of virtual data
provides flexibility to grid execution planners, allowing
them to take advantage of scheduling techniques normally
reserved for well understood, homogenous environments.
From a physicist’s point of view, however, virtual data
represents a “recipe” for re-producing historical data or
producing future data and, as a consequence, provides a
provenance record of any data product created within a
virtual data system.

This paper reports on the initial application of the
GriPhyN Virtual Data System, known as Chimera [1], to
the CMS Monte Carlo production of simulated data in a
grid environment.

2. THE CHIMERA VIRTUAL DATA SYSTEM
The Chimera Virtual Data System requires that jobs be

expressed in a Virtual Data Language (VDL). Chimera
currently operates on two types of VDL objects:
transformations and derivations [2]. A transformation is a
schema defining formal types of input and output required
to execute a particular application and is mapped onto an
executable. A derivation represents a particular invocation
of a transformation and is an actual virtual data product; it
contains a detailed record of all the parameters needed to
create a piece of actual data. Virtual data becomes
physical data when its derivation is executed. A
transformation thus represents a class of virtual data
objects, while a derivation represents a particular virtual
data object. [1, 3]

Chimera stores these VDL objects in a Virtual Data
Catalogue (VDC). When a user requests that a particular
virtual data product be instantiated, Chimera invokes an
“abstract planner” which queries the VDC. This query
recursively traverses the associated graph of derivations,
thereby satisfying any required (virtual) data
dependencies, and returns an abstract workflow plan in the
form of a Directed Acyclic Graph (DAG), where each
node represents an application and each edge an
input/output dependency. This abstract DAG, the first step
in the execution process, specifies all of the I/O
dependencies required to create the requested virtual data
product and represents the graph with maximal (virtual)
data dependencies.

 Stage File In

Execute Job

Stage File Out

Register File

Figure 1: A concrete Chimera DAG corresponding to a
CMS virtual data request: Mapping an abstract DAG
onto physical grid resources produces a concrete DAG,
which can be directly submitted to the grid via
Condor-G/DAGMan.

Once an abstract workflow plan for the requested virtual
data product has been produced, the plan is then mapped
onto a set of actual grid resources for execution [4]. Given
a user declared site for execution, Chimera invokes the
Pegasus “concrete planner” [5] which first checks a
Replication Location Service (RLS) [6] for the actual
existence of any dependent input/output data in the

FERMILAB-Conf-03/485-CD August 2004

 CHEP 2003, La Jolla, California, March 24-28, 2003 2

TUAT011

abstract DAG, pruning any superfluous edges, and
secondly dresses up any remaining nodes with stage-in,
stage-out, and register nodes accounting for any location
specific requirements of the chosen grid execution site (see
Figure 1). The resulting concrete DAG then contains the
minimal execution steps required to produce the requested
virtual data product and is fully resolved onto particular
grid resources. The Chimera Virtual Data System
produces the concrete DAG in the Condor/DAGMan
ClassAd format, enabling the user to directly submit the
plan for the requested virtual data product to Condor-
G/DAGMan [7, 8].

3. A CMS PRODUCTION USE-CASE OF
SIMULATED DATA

A variety of different use-cases exist for production of
simulated CMS data however, for this study, only one of
the simpler cases was implemented: an “n-tuple-only”
production, consisting of a five stage computational
pipeline as shown in Figure 2.

Generation

Simulation

Formatting

Reconstruction

AnalysisN-tuple

O
O

D
B

Figure 2: N-tuple-only CMS simulation pipeline. The
two stages on the left simulate the CMS detector and
three stages on the right process events from the
(simulated) detector.

For simplicity, this particular pipeline can be split into
two sections: simulation and reconstruction. The initial
section consists of two FORTRAN application stages.
The first, a generation stage called CMKIN, simulates the
underlying physics of each event using Pythia [9]. The
second stage, called CMSIM, corresponds to detector
simulation and models the CMS experimental apparatus’
response via GEANT 3 [10] to the events created in the
first stage.

The second section, reconstruction and analysis1,
consists of three different application invocations of the
CMS analysis and reconstruction C++ framework, known
as ORCA [11]. Each ORCA application is a dynamically
linked executable and requires local access to a CMS
specific data persistency system.2 The first ORCA
application stage, hit formatting, copies the simulated
detector raw hit data from a flat FORTRAN file into an
object-oriented database. The next ORCA application
stage reconstructs the physics event data from the raw

1 Initial applications of the Chimera Virtual Data System with
specific emphasis on the analysis of simulated CMS physics data
have been performed and are reported in [14].
2 At the time of this study, Objectivity/DB was used as the CMS
data persistency system.

detector response. The final ORCA application stage
corresponds to analysis and selects (or possibly creates)
user-specific information from the reconstructed event
data, producing a smaller, concise, flat n-tuple file that is
more easily analyzed by CMS physicists. This last file, in
an n-tuple-only production, is the only important piece of
data. All other intermediate files and databases may be
discarded and only log files for the intermediate data
products need to be kept for quality assurance validation.

4. APPLYING CHIMERA TO CMS
PRODUCTION

For the chosen CMS production use-case, only one set
of transformations, defining the input/output dependency
schema for each application, had to be created. It would
have been optimal to create one transformation for each
stage in the CMS pipeline, but limitations of the CMS
executables and the grid environment required that they be
lumped into two transformations, one for each section of
the pipeline (represented by the execution job nodes in
Figure 1). The below text represents example VDL code
for the CMKIN/CMSIM transformation and a
corresponding derivation:

TR FORTRAN_SECTION(none runnum, none project,
 none numevents, output outfile,
 input kincard, input simcard,
 input geomfile, output logfile)
{
 argument = ${none:runnum};
 argument = ${none:project};
 argument = ${none:numevents};
 argument = ${input:kincard};
 argument = ${input:simcard};
 argument = ${input:geomfile};
 argument = ${output:logfile};
 argument = ${output:outfile};
}

DV EG02_BIGJETS_1_SIMULATION->FORTRAN_SECTION(
 kincard=@{input:"eg02_BigJets_Id_252.txt"},
 simcard=@{input:"STANDARD_125_Id_42.txt"},
 geomfile=@{input:"cms125.rz"},
 logfile=@{output:"fortran.eg02_BigJets_1.log"},
 numevents="250",
 outfile=@{output:"eg02_BigJets_1.fz"},
 project="eg02_BigJets",
 runnum="1");

The transformation argument types input, output, none
explicitly indicate dependencies. Chimera resolves input
dependencies by RLS lookup or transformation
invocation, and output dependencies by RLS register;
arguments that pose no dependency requirements are
simple parameters. In this particular example, project
represents the name of the production; runnum corresponds
to job-splitting (see below) and doubles as the random
number seed used for the job, numevents represents the
number of events which are to be produced by the job,
kincard is the CMKIN input card file, simcard is the
CMSIM input card file, geomfile specifies the input
GEANT geometry file for the CMS detector, logfile
names the output file for "stdout" from both the CMKIN

 CHEP 2003, La Jolla, California, March 24-28, 2003 3

TUAT011

and CMSIM applications, and outfile identifies the
output CMSIM data file.3

As Chimera requires that only one executable be
mapped to a transformation, CMS application wrapper
scripts were written to encapsulate the interaction of all the
executables within a section. These scripts, in addition to
encapsulating the various stages, must also gather
information needed to update a centralised CMS reference
metadata database (known as the RefDB [12]) and must
configure the execution environment for the CMS
executables. Configuring the local CMS execution
environment was a significant overhead, requiring manual
pre-installation and configuration of the CMS software at
each individual grid site.

A typical CMS production run requires that hundreds,
sometimes thousands, of derivations be created. In
addition, CMS requires that all sites producing CMS
simulations read their input parameters from the CMS
metadata database (RefDB) and write back to the database
a list of values describing how and when the data was
produced [12]. In order to meet these requirements,
several proof-of-concept Bourne Shell scripts were
written.

First, prototype scripts were written to interface
Chimera with the RefDB. There are two interface scripts:
one reads from the database and one writes to the
database. The “read” script queries the RefDB and
produces a job description file. This file is used later to
write the derivations. The “write” script parses the log
files produced by the CMS wrapper scripts described
above for information about the success of the job, the size
and location of the output files, and many of the physical
parameters created by the simulation; this parsed data is
reformatted and updated into the RefDB.

The job description file produced by the “read” script is
passed to a prototype derivation generating script. This
script reads the job description file to determine various
job parameters. A typical production may require 100,000
or more events to be produced, requiring several thousand
CPU/hours to compute. Due to the parallel properties of
the Monte Carlo simulation, this large production is split
into a number of smaller jobs for computation. The
“derivation generating” script performs this splitting and
adjusts all of the input parameters accordingly, before
writing out all of the derivations and creating the abstract
DAG for each individual CMS virtual data product.

With the success of the initial study, the relevant
functionality of the above RefDB interface scripts and the
prototype derivation generating scripts have now been

3 In principle one could store all of the CMKIN and CMSIM
parameters contained in the input card files as VDL formal
entries of type none in the transformation definition with actual
values passed to every derivation. But, as the vast majority of
these necessary parameters are static, they are currently stored as
a dependent input file for reasons of economy. This argues for a
rich, persistent mechanism for the manipulation of structured
application metadata.

incorporated into the official CMS metadata and workflow
manager, MCRunJob [13], which queries and updates the
RefDB, performs the job-splitting and directly writes the
appropriate Chimera derivations required for each virtual
data product into the VDC.

5. A GRID SCHEDULER FOR VIRTUAL
DATA PRODUCTION

In order to enable the Chimera system to support long
running, production workflows on a virtual data grid [4], a
prototype scheduler, known as WorkRunner was written
(see Figure 3).

compute
machines

Condor - G

Chimera

DAGman

gahp_server

submit host remote host

gatekeeper

Local Scheduler
(Condor, PBS, etc.)

WorkRunner

RefDB McRunJob:
Generic Workflow

Generator

compute
machines

Condor - G

Chimera

DAGman

gahp_server

submit host remote host

gatekeeper

Local Scheduler
(Condor, PBS, etc.)

WorkRunner

RefDB McRunJob:
Generic Workflow

Generator

Figure 3: Important pieces of the virtual data grid used
by this study. The GriPhyN Virtual Data Toolkit was
used to build the basic grid infrastructure.

WorkRunner is invoked once all virtual data derivations
have been pre-recorded into the VDC by the metadata and
workflow manager (initially the prototype scripts
described above and now by MCRunJob). Rather than
immediately concretizing the DAGs and submitting the
jobs to the grid, the abstract DAGs are queued into
WorkRunner. WorkRunner determines which grid sites
are free to receive work and submits DAGs from its queue
to keep them working at maximum capacity. WorkRunner
is divided into three modules. First, a Condor-G interface
monitors information from the Condor-G submission
program to determine which sites in the grid are in "need"
of work. This "need" is determined using high and low
watermarks. WorkRunner determines the number of jobs
running at each site and if this number is below the low
watermark, it submits jobs until it rises above the high
watermark. The user supplies the high and low
watermarks so they reflect the expected throughput of the
particular grid site. Second, a Chimera interface takes
queued abstract DAGs, asks Chimera to concretize them,
and then submits them to the appropriate site through
Condor-G. Finally, a job-tracking module records
information about the status of each job in the
WorkRunner queue as well as those, which have been sent
and are executing via Condor-G.

 CHEP 2003, La Jolla, California, March 24-28, 2003 4

TUAT011

6. INITIAL RESULTS
This project had two testing phases, an integration test

and a scheduling test. After the wrapper scripts were
completed, all the VDL components were created, and the
derivation generation scripts were written, a test
production of 150,000 events was performed. This first
test used the University of Florida GriPhyN computing
cluster consisting of 25 dual-processor Pentium (1 GHz)
machines. Over the course of 7 days, 678 DAGs each
computing 250 events were submitted. Of these DAGs,
670 were successful and produced 167,500 events using
approximately 350 CPU/days of computing power and
producing approximately 200GB of simulated data. The 8
unsuccessful DAGs failed when accidentally preempted by
local user.

The second test was designed to test the power of the
new scheduler as well as the Chimera integration on a
wider variety of computing sites. New sites were built at
the University of Florida High Speed Simulation and
Computing Center, the University of Chicago Computer
Science Department, the University of Wisconsin,
Milwakee, Physics Department, and at the Argonne
National Laboratory DataGrid experiment cluster.
Additionally, the resources of the University of Florida
physics cluster were divided and a second cluster was built
with half of the machines. All grid sites used the GriPhyN
Virtual Data Toolkit as the base grid middleware. In
addition, all required CMS software4 and supporting
scripts were pre-installed and configured on all grid sites.

For the scheduling test, a larger number of DAGs were
used. In order to bring the computational time for each job
down, only one event was produced with each DAG.
However, 10,000 such DAGs were created. WorkRunner
was used to submit these DAGs to all 6 of the compute
sites. After continuously running for 4 days, 5954 DAGs
were submitted to the grid, of which 5559 DAGs returned
their data successfully. The 6.3% failure rate was higher
than anticipated and resulted from unforeseen failures in
the other grid components. In one instance, an entire
compute site lost communication with the submitting site
for several hours and approximately 200-300 hundred
DAGs failed to write back their data back during this time.
The cause for the remainder of the failed jobs, about one
random job in fifty, appears to be due to known
deficiencies in early versions of the grid middleware.

7. SUMMARY
Tests of the GriPhyN Chimera Virtual Data System

have been performed within the context of CMS
Production of Monte Carlo Simulated Data. A CMS
Workflow Planner, MCRunJob, was used to generate
virtual data products using the Virtual Data Language.

4 As the ORCA application stages were only certified for
execution within a Red Hat Linux 6 environment, only grid sites
running that version of the operating system were used for
running the ORCA stages of a DAG.

Subsequently, a workflow manager, known as
WorkRunner, was used to schedule the instantiation of
virtual data products across a grid. The tests demonstrate
the feasibility of using such a Virtual Data System to form
a production workflow using high level, existence and
location independent descriptions as well as, automatically
mapping and scheduling such high level, logical
descriptions of workflow onto physical grid resources
within an actual CMS production environment.

Acknowledgments
We would especially like to thank our colleagues in the

High-performance Computing & Simulation Research Lab
at the University of Florida including Prof. Alan George,
Raj Subramaniyn, and Sarp Oral for the use of their
resources. In addition, the authors wish to particularly
recognise Michael Milligan, Guarang Mehta and Karan
Vahi, for many helpful discussions contributing to this
work.

This work is supported in part by the United States
National Science Foundation under grants NSF ITR-
0086044 (GriPhyN) and NSF PHY-0122557 (iVDGL).

References
[1] Foster, I., Vöckler, J., Wilde, M., and Zhao, Y.

"Chimera: A Virtual Data system for Representing,
Querying, and Automating data Derivation."
presented at 14th International Conference on
Scientific and Statistical Database Management
(SSDBM 2002), Edinburgh, 2002.

[2] Deelman, E., Foster, I., Kesselman, C., and Livny,
M. "Representing Virtual Data: A Catalog
Architecture for Location and Materialization
Transparency." Technical Report GriPhyN-2001-
14, 2001.

[3] Vöckler, J., Wilde, M., and Foster, I. “The
GriPhyN Virtual Data System.” unpublished ms.
2002.

[4] Deelman, E. et al. “Mapping Abstract Complex
Workflows onto Grid Environments.” To appear in
Journal of Grid Computing, 2003.

[5] Deelman, E., Blythe, J., Gil, Y., and Kesselman, C.
"Pegasus: Planning for Execution in Grids."
Technical Report GriPhyN-2002-20, November
2002.

[6] Chervenak, A. et al. "Giggle: A Framework for
Constructing Scalable Replica Location Services."
To appear in Proceedings of SC2002 Conference,
November 2002.

[7] Frey, J., Tannenbaum, T., Foster, I., Livny, M., and
Tuecke, S. "Condor-G: A Computation
Management Agent for Multi-Institutional Grids."
Cluster Computing, vol. 5, pp. 237-246, 2002.

[8] "DAGMan."
http://www.cs.wisc.edu/condor/dagman/, May
2003.

 CHEP 2003, La Jolla, California, March 24-28, 2003 5

TUAT011

[9] Sjoestrand, T., Loennblad, L., Mrenna, S., and
Skands, P. "Pythia 6.2: Physics and Manual." hep-
ph/0108264, April 2002.

[10] Goossens, M. (documentation consultant).
"GEANT: Detector Description and Simulation
Tool." CERN Program Library Long Writeup
W5013, 1993.

[11] Wynhoff, S. "CMS OO Reconstruction."
http://cmsdoc.cern.ch/orca/, May 2003

[12] Lefebure, V., and Andreeva, J. "RefDB."
http://cmsdoc.cern.ch/documents/02/ in02_044.pdf,
CMS IN 2002/044, November 2002.

[13] Graham, G., "MCRunJob."
http://home.fnal.gov/~ggraham/doc/McRunjob.html
, May 2003.

[14] Arbree, A. et al. "Virtual Data in CMS Analysis."
TUAT010, these proceedings.

